博彩评级网-博彩网

專 欄

首 頁

專 欄

學術報告(李進開,華南師范大學研究員,2019.05.31)

學術舉辦時間 2019年05月31日 14:00-15:00 學術舉辦地點 理學實驗樓312報告
主講人 李進開 主題 Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations ??(2019030)

學術報告

報告題目Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations   (2019030)

報告人:李進開(華南師范大學 研究員)

報告時間:20190531日(周五)下午14:00-15:00

報告地點:理學實驗樓312

 

報告摘要The entropy is one of the fundamental physical states for compressible fluids. Due to the singularity of the logarithmic function at zero and the singularity of the entropy equation in the vacuum region, it is difficult to analyze mathematically the entropy of the ideal gases in the presence of vacuum. We will present in this talk that an ideal gas can retain its uniform boundedness of the entropy, up to any finite time, as long as the vacuum presents at the far field only and the density decays to vacuum sufficiently slowly at the far field. Precisely, for the Cauchy problem of the one-dimensional heat conductive compressible Navier-Stokes equations, in the presence of vacuum at the far field only, the local and global existence and uniqueness of strong solutions, and the uniform boundedness (up to any finite time) of the corresponding entropy have been established, provided that the initial density decays no faster than $O(\frac{1}{x^2})$ at the far field. By introducing the Jacobian between the Euler and Lagrangian coordinates to replace the density as one of the unknowns, we establish the global existence of strong solutions, in the presence of vacuum, and, thus, extend successfully the classic results in [1,2] from the non-vacuum case to the vacuum case. The main tools of proving the uniform boundedness of the entropy are some weighted energy estimates carefully designed for the heat conductive compressible Navier-Stokes equations, with the weights being singular at the far field, and the De Giorgi iteration technique applied to a certain class of degenerate parabolic equations in nonstandard ways. The De Giorgi iterations are carried out to different equations to obtain the lower and upper bounds of the entropy.

[1] Kazhikhov, A. V.: Cauchy problem for viscous gas equations, Siberian Math. J., 23 (1982),44-49.

[2] Kazhikhov, A. V.; Shelukhin, V. V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.

 

個人簡介:李進開,男,博士,研究員,博士生導師。2013年博士畢業于香港中文大學數學研究所,導師為辛周平教授。20138月至20167月在以色列魏茨曼科學研究所從事博士后研究工作,合作導師為Edriss S. Titi教授,20168月至20187月在香港中文大學數學系任研究助理教授,20188月起在華南師范大學華南數學應用與交叉研究中心任研究員。主要研究方向為流體動力學偏微分方程組,具體包括大氣海洋動力學方程組、可壓縮Navier-Stokes方程組等,相關成果發表于CPAM, ARMACPDE, JFA等雜志,入選第14批國家重大人才工程項目入選者。

 

上一條:地理學人講壇第215講 下一條:土木工程學院學術講座--叢正霞教授

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

迪威百家乐娱乐平台| 百家乐奥| 博彩百家乐官网画谜网| 百家乐官网游戏看路| 真人百家乐国际第一品牌| 百家乐官网打水论坛| 516棋牌游戏下载| 百家乐白菜价| 百家乐官网机械图片| 桃园县| 现场百家乐官网平台源码| 澳门百家乐群代理| 百家乐官网开发软件| 大发888代充平台| 百家乐稳一点的押法| KK百家乐官网现金网| 大发888提款之后多久到账| 网上玩百家乐有钱| 足球博彩通| 老虎机怎么玩| 百家乐大眼仔小路| 葡京百家乐官网的玩法技巧和规则| 没费用百家乐分析器| 百家乐官网扑克多少张| 什么叫百家乐的玩法技巧和规则| 百家乐官网怎样算大小| 新锦江百家乐娱乐| 百家乐预测和局| 真人百家乐官网游戏软件| 百家乐官网扑克投注赢钱法| 澳博娱乐| 面对面棋牌游戏| 大发888游戏官方网站| 百家乐前四手下注之观点| 百家乐官网出闲几率| 武义县| 大发888娱乐送体验金| 属鸡和属猪做生意好吗| 百家乐官网机器图片| 游戏机百家乐的玩法技巧和规则 | 大上海百家乐娱乐城|