博彩评级网-博彩网

專 欄

首 頁

專 欄

學術報告(Kawamura Shinzo 教授,2019.9.16)

學術舉辦時間 2019年9月16日 10:00—11:00 學術舉辦地點 廣州大學理學實驗樓314
主講人 Kawamura Shinzo (河村新蔵) 主題 Chaos on symbolic dynamical systems

數學學院學術講座  (2019054)

 

 

 

報告人: Kawamura Shinzo (河村新蔵)

單位: 日本山形大學(Yamagata University

職務: 教授

報告時間: 2019916 上午10:00—11:00

報告地點: 廣州大學理學實驗樓314

 

TitleChaos on symbolic dynamical systems

 

ABSTRACTChaos theory is a branch of mathematics focusing on the behavior of dynamical systems that are highly sensitive to initial conditions. ”Chaos” is an interdisciplinary theory stating within the apparent randomness of chaotic complex systems such as f(z)=z^2+C and the deterministic nonlinear system which can result in large differences in a later state, e.g. a butterfly flapping its wings in Brazil can cause a hurricane in Texas.

 

Nowadays, in common usage, ”chaos” means ”a state of disorder”. However, in chaos theory, the term is defined more precisely. Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney for a continuous map f:X—>X on some metric space X as follows [2]: the dynamical system Σ=(X,f) is said to be chaotic if has the following three properties called chaotic properties.

(1) The set of all periodic points of is dense in X. (2) is topologically transitive. (3) has sensitive dependence on initial conditions.

 

We here note that five mathematicians [1] show that if a dynamical system (X; f) satisfies Properties (1) and (2) and the cardinal number of is infinite, then Property (3) automatically holds. Namely two topological properties implies a property of metric space. It was a surprising result.

 

Now, we restrict the compact metric space to the compact metric Cantor space Σ_n consisting of all infinite sequences of integers between 1 and n, and the function to the backward shiftσ_n. It is well-known that the dynamical system (Σ_n,σ_n) is chaotic in the sense of Devaney. In this talk, we consider a kind of dynamical systems (Σ_A,σ_A) associated with n×n matrix with all entries belonging to {0,1}, whereΣ_A is a compact and σ-invarinat subset ofΣ_n andσ_A is the restriction of σ toΣ_A. We show a necessary and sufficient condition for the dynamical system (Σ_A,σ_A) to be chaotic in term of the propery of the following matrix [3]: A+A^2+…+A^n

[1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition of Chaos, Amer. Math. Monthly, 99(1992), 332-334.

[2] R. L. Devaney, An intorodunction to chaotic dynamical systems, Second Edition, Addision-Wesley, Redwood City, 1989

[3] S. Kawamura, H.Takaegara and A.Uchiyam, Chaotic conditions of dubshift on symbolic dynamical systems, preprint.

 

報告人簡介:河村新蔵,日本山形大學數理科學部教授。1983年畢業于北海道大學,獲得博士學位。1974—2014間,日本山形大學講師,副教授,教授。1988Wales 大學(United Kingdom)留學,2012-至今,北京林業大學客座教授。

主要研究內容:泛函分析,代數算子,模糊理論,動力系統等,分別在Tohoku Math.J.J.Math.Soc.Japan,Proc.Amer.Math.Soc.Math. Scand等學術雜志上發表學術論文60余篇。

 

 

上一條:2019年引智講壇之五十 下一條: 化學化工講壇第五十五、五十六、五十七講

郵編:510006        郵箱:[email protected]

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

兴安县| 百家乐官网视频下载| 真人游戏视频| 百家乐官网2棋牌作弊软件| 百家乐群lookcc| 网上百家乐官网公司| 康定县| 真人百家乐软件云南景| 百家乐官网赢家打法| 菲彩国际| 巴厘岛百家乐娱乐城| 送现金百家乐官网的玩法技巧和规则| 盛大娱乐城现金网| 百家乐凯时赌场娱乐网规则| 德州百家乐官网21点桌| 百家乐官网路单规则| 香港六合彩特码资料| 百家乐筹码14克| 任我赢百家乐自动投注分析系统| 金木棉百家乐的玩法技巧和规则 | 瑞丰国际娱乐场| 百家乐桌布呢布| 澳门百家乐一把决战输赢| 庞博百家乐官网的玩法技巧和规则 | 赌百家乐官网咋赢对方| 皇冠网 全讯通| 六合彩网址| 威尼斯人娱乐城官方网址| 博天堂百家乐的玩法技巧和规则| 百家乐翻天粤语版qvod| 千亿百家乐官网的玩法技巧和规则| 百家乐官网园sun811| 庄河市| 曼哈顿娱乐城| 大发888捕鱼| 大发888游戏是真的吗| 百家乐追号工具| 仕達屋百家乐的玩法技巧和规则| 柬埔寨百家乐的玩法技巧和规则| 百家乐官网庄闲客户端| 百家乐官网注册开户送现金 |