博彩评级网-博彩网

專 欄

首 頁

專 欄

學術報告(Kawamura Shinzo 教授,2019.9.16)

學術舉辦時間 2019年9月16日 10:00—11:00 學術舉辦地點 廣州大學理學實驗樓314
主講人 Kawamura Shinzo (河村新蔵) 主題 Chaos on symbolic dynamical systems

數學學院學術講座  (2019054)

 

 

 

報告人: Kawamura Shinzo (河村新蔵)

單位: 日本山形大學(Yamagata University

職務: 教授

報告時間: 2019916 上午10:00—11:00

報告地點: 廣州大學理學實驗樓314

 

TitleChaos on symbolic dynamical systems

 

ABSTRACTChaos theory is a branch of mathematics focusing on the behavior of dynamical systems that are highly sensitive to initial conditions. ”Chaos” is an interdisciplinary theory stating within the apparent randomness of chaotic complex systems such as f(z)=z^2+C and the deterministic nonlinear system which can result in large differences in a later state, e.g. a butterfly flapping its wings in Brazil can cause a hurricane in Texas.

 

Nowadays, in common usage, ”chaos” means ”a state of disorder”. However, in chaos theory, the term is defined more precisely. Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney for a continuous map f:X—>X on some metric space X as follows [2]: the dynamical system Σ=(X,f) is said to be chaotic if has the following three properties called chaotic properties.

(1) The set of all periodic points of is dense in X. (2) is topologically transitive. (3) has sensitive dependence on initial conditions.

 

We here note that five mathematicians [1] show that if a dynamical system (X; f) satisfies Properties (1) and (2) and the cardinal number of is infinite, then Property (3) automatically holds. Namely two topological properties implies a property of metric space. It was a surprising result.

 

Now, we restrict the compact metric space to the compact metric Cantor space Σ_n consisting of all infinite sequences of integers between 1 and n, and the function to the backward shiftσ_n. It is well-known that the dynamical system (Σ_n,σ_n) is chaotic in the sense of Devaney. In this talk, we consider a kind of dynamical systems (Σ_A,σ_A) associated with n×n matrix with all entries belonging to {0,1}, whereΣ_A is a compact and σ-invarinat subset ofΣ_n andσ_A is the restriction of σ toΣ_A. We show a necessary and sufficient condition for the dynamical system (Σ_A,σ_A) to be chaotic in term of the propery of the following matrix [3]: A+A^2+…+A^n

[1] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney’s definition of Chaos, Amer. Math. Monthly, 99(1992), 332-334.

[2] R. L. Devaney, An intorodunction to chaotic dynamical systems, Second Edition, Addision-Wesley, Redwood City, 1989

[3] S. Kawamura, H.Takaegara and A.Uchiyam, Chaotic conditions of dubshift on symbolic dynamical systems, preprint.

 

報告人簡介:河村新蔵,日本山形大學數理科學部教授。1983年畢業于北海道大學,獲得博士學位。1974—2014間,日本山形大學講師,副教授,教授。1988Wales 大學(United Kingdom)留學,2012-至今,北京林業大學客座教授。

主要研究內容:泛函分析,代數算子,模糊理論,動力系統等,分別在Tohoku Math.J.J.Math.Soc.Japan,Proc.Amer.Math.Soc.Math. Scand等學術雜志上發表學術論文60余篇。

 

 

上一條:2019年引智講壇之五十 下一條: 化學化工講壇第五十五、五十六、五十七講

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

五星百家乐的玩法技巧和规则| 百家乐投注法减注| 百家乐官网分析博彩正网| 防伪百家乐官网筹码币套装| 百家乐高| 百家乐官网路单怎样| 大发888 娱乐免费游戏| 百家乐官网娱乐网网77scs| 24楼层风水| 皇冠网小说网站网址| 百家乐投注开户| 百家乐官网游戏平台排名| 百家乐平注法到| 百家乐官网桌颜色可定制| 百家乐高手论| 乐天堂百家乐官网赌场娱乐网规则| 大发888娱乐场官网| 百家乐官网赔率计算| 青岛棋牌英雄| 百家乐和| 诸子百家乐官网的玩法技巧和规则 | 网上澳门| 百家乐平台出租家乐平台出租| 百家乐官网有哪些注| 大发888体育在线| 波浪百家乐测试| 威尼斯人娱乐官方| 赌百家乐波音备用网| 百家乐官网开户优惠多的平台是哪家| 网上百家乐是不是真的| 菲律宾百家乐娱乐网| 百家乐官网l路单| 宿松县| 棋牌游戏注册送6元| 新锦江百家乐赌场娱乐网规则 | 正品百家乐玩法| 宾利百家乐游戏| 百家乐官网有免费玩| 余杭棋牌世界| 老虎机批发| 澳门百家乐职业赌客|